圖1 芒成像。( A )從每株植株的主穗上采集中部3個(gè)芒。芒的中央和基部被粘貼在成像載玻片上,并在數(shù)字顯微鏡下生成顯微圖像。( B )芒基部近軸面的代表性顯微圖像。在2個(gè)芒粗糙度控制位點(diǎn)( “A ”和“ B ”)上,2個(gè)可替代等位基因所有可能的純合遺傳類顯示出不同的倒刺密度和大小。
圖2 顯微鏡下采集大麥芒圖像實(shí)例。( A )原始圖像,分辨率為1200 × 1600,( b ) 由ImageJ生成掩膜圖。 表1 原始U-net和BarbNet的卷積參數(shù)。
圖4 BarbNet模型訓(xùn)練集和驗(yàn)證集在75個(gè)epochs的性能。( A )交叉熵?fù)p, ( B ) Dice系數(shù)。x軸和y軸分別表示epoch個(gè)數(shù)和性能。
圖5 BarbNet模型和U-net及其改進(jìn)模型性能比較。( A )交叉熵?fù)p, ( B ) Dice系數(shù)。x軸和y軸分別表示epoch個(gè)數(shù)和性能。
文獻(xiàn)來源:Narendra Narisetti Muhammad Awais Muhammad Khan Frieder Stolzenburg Nils Stein Evgeny Gladilin. . Awn Image Analysis and Phenotyping Using BarbNet. Plant Phenomics. 2023:5;0081. DOI:10.34133/plantphenomics.0081